Apache Parquet

Apache Parquet est un format open-source, binaire, de stockage en colonnes dans l'écosystème Hadoop. Il est particulièrement adapté aux environnements Big Data car il permet la parallélisation multi-disque et une compression efficace.

Articles associés

Comparaison de différents formats de fichier en Big Data

Catégories : Big Data, Data Engineering | Tags : Analytique, Avro, HDFS, Hive, Kafka, MapReduce, ORC, Spark, Traitement par lots, Big Data, CSV, Analyse de données, Data structures, Base de données, JSON, Protocol Buffers, Hadoop, Parquet, Kubernetes, XML

Dans l’univers du traitement des données, il existe différents types de formats de fichiers pour stocker vos jeu de données. Chaque format a ses propres avantages et inconvénients selon les cas d…

NGOM Aida

By NGOM Aida

23 juil. 2020

Importer ses données dans Databricks : tables externes et Delta Lake

Catégories : Data Engineering, Data Science, Formation | Tags : Parquet, AWS, Amazon S3, Azure Data Lake Storage (ADLS), Databricks, Delta Lake, Python

Au cours d’un projet d’apprentissage automatique (Machine Learning, ML), nous devons garder une trace des données test que nous utilisons. Cela est important à des fins d’audit et pour évaluer la…

Stockage HDFS et Hive - comparaison des formats de fichiers et compressions

Catégories : Data Engineering | Tags : Analytique, Hive, ORC, Parquet, Format de fichier

Il y a quelques jours, nous avons conduit un test dans le but de comparer différents format de fichiers et méthodes de compression disponibles dans Hive. Parmi ces formats, certains sont natifs à HDFS…

WORMS David

By WORMS David

15 juil. 2012

Canada - Morocco - France

International locations

10 rue de la Kasbah
2393 Rabbat
Canada

Nous sommes une équipe passionnées par l'Open Source, le Big Data et les technologies associées telles que le Cloud, le Data Engineering, la Data Science le DevOps…

Nous fournissons à nos clients un savoir faire reconnu sur la manière d'utiliser les technologies pour convertir leurs cas d'usage en projets exploités en production, sur la façon de réduire les coûts et d'accélérer les livraisons de nouvelles fonctionnalités.

Si vous appréciez la qualité de nos publications, nous vous invitons à nous contacter en vue de coopérer ensemble.