Apache Parquet
Apache Parquet est un format open-source, binaire, de stockage en colonnes dans l'écosystème Hadoop. Il est particulièrement adapté aux environnements Big Data car il permet la parallélisation multi-disque et une compression efficace.
Articles associés
Développement accéléré de modèles avec H2O AutoML et Flow
Catégories : Data Science, Formation | Tags : Automation, Cloud, H2O, Machine Learning, MLOps, On-premises, Open source, Python
La construction de modèles de Machine Learning (ML) est un processus très consommateur de temps. De plus, il requière de bonne connaissance en statistique, en algorithme de ML ainsi qu’en…
10 déc. 2020
Comparaison de différents formats de fichier en Big Data
Catégories : Big Data, Data Engineering | Tags : Analytique, Avro, HDFS, Hive, Kafka, MapReduce, ORC, Spark, Traitement par lots, Big Data, CSV, Analyse de données, Data structures, Base de données, JSON, Protocol Buffers, Hadoop, Parquet, Kubernetes, XML
Dans l’univers du traitement des données, il existe différents types de formats de fichiers pour stocker vos jeu de données. Chaque format a ses propres avantages et inconvénients selon les cas d…
By NGOM Aida
23 juil. 2020
Importer ses données dans Databricks : tables externes et Delta Lake
Catégories : Data Engineering, Data Science, Formation | Tags : Parquet, AWS, Amazon S3, Azure Data Lake Storage (ADLS), Databricks, Delta Lake, Python
Au cours d’un projet d’apprentissage automatique (Machine Learning, ML), nous devons garder une trace des données test que nous utilisons. Cela est important à des fins d’audit et pour évaluer la…
21 mai 2020
Stockage HDFS et Hive - comparaison des formats de fichiers et compressions
Catégories : Data Engineering | Tags : Analytique, Hive, ORC, Parquet, Format de fichier
Il y a quelques jours, nous avons conduit un test dans le but de comparer différents format de fichiers et méthodes de compression disponibles dans Hive. Parmi ces formats, certains sont natifs à HDFS…
By WORMS David
15 juil. 2012