MLOps

MLOps is an extention of DevOps (development and operations) practices of putting in production machine learning (ML) models. It is focused on automation and monitoring at all the steps of ML system construction: creating reproducible pipelines, reusable software environment, testing, integration, deployment and model performance monitoring.

There are many additional components in MLOps in comparison to DevOps, due to different nature of Data Science and Software development projects. In Data Science:

  • many different programming languages and frameworks are used, thus the projects don't have monolithic structure.

  • there is an experimentation step during development of models, where the performance of the models and used datasets need to be tracked.

  • testing needs to include the model, data and the software components.

  • pipelines can be long and complex and deploying them can require automating many steps that were done manually during the construction of the system.

  • once in production, the performance of the model needs to be constantly monitored, since change in incoming data can change decrease the performance. In this case, the model should be re-trained. MLOps is a practice for collaboration and communication between data scientists and operations professionals to help mannage production ML lifecycle. Similar to the DevOps and DataOps appoaches, MLOps looks to increase automation and improve the quality of production ML while also focusiong on business and regulatory requirements.

Related articles

MLflow tutorial: an open source Machine Learning (ML) platform

Categories: Data Engineering, Data Science, Learning | Tags: Deep Learning, AWS, Databricks, Deployment, Machine Learning, Azure, MLflow, MLOps, Python, Scikit-learn

Introduction and principles of MLflow With increasingly cheaper computing power and storage and at the same time increasing data collection in all walks of life, many companies integrated Data Science…

Machine Learning model deployment

Categories: Big Data, Data Engineering, Data Science, DevOps & SRE | Tags: DevOps, Operation, Schema, AI, Cloud, Machine Learning, MLOps, On-premises

“Enterprise Machine Learning requires looking at the big picture … from a data engineering and a data platform perspective,” lectured Justin Norman during the talk on the deployment of Machine…

Oskar RYNKIEWICZ

By Oskar RYNKIEWICZ

Sep 30, 2019

Canada - Morocco - France

International locations

10 rue de la Kasbah
2393 Rabbat
Canada

We are a team of Open Source enthusiasts doing consulting in Big Data, Cloud, DevOps, Data Engineering, Data Science…

We provide our customers with accurate insights on how to leverage technologies to convert their use cases to projects in production, how to reduce their costs and increase the time to market.

If you enjoy reading our publications and have an interest in what we do, contact us and we will be thrilled to cooperate with you.